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Adaptive time-frequency approximations of signals have proven to be a valuable tool in electroencephalo-
gram (EEG) analysis and research, where it is believed that oscillatory phenomena play a crucial role in the
brain’s information processing. This paper extends this paradigm to the nonoscillating structures such as the
epileptic EEG spikes, and presents the advantages of their parametrization in general terms such as amplitude
and half-width. A simple detector of epileptic spikes in the space of these parameters, tested on a limited data
set, gives very promising results. It also provides a direct distinction between randomly occurring spikes or
spike/wave complexes and rhythmic discharges.
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I. INTRODUCTION

Electroencephalogram(EEG) is the recording of the elec-
trical activity of the brain. One of the major fields of appli-
cation of this relatively cheap and noninvasive diagnostic
technique is epilepsy, which affects almost 1% of the world’s
population.

Adaptive approximations in time-frequency dictionaries
provide description of signal’s structures in terms of standard
parameters: amplitude, phase, time, and frequency positions
and width[1–3]. They offer also a high time-frequency reso-
lution [4] and robust estimates of the distribution of signal’s
energy density in the time-frequency space[5,6]. These ad-
vantages have proved to be crucial in the analysis of the
electrical activity of the brain, where it is believed that infor-
mation processing is reflected in transient oscillatory activi-
ties. In epilepsy this approach was used for the classification
of seizures, via high resolution estimates of the time-
frequency energy density of intracranial(ECoG) recordings
[7]. This study extends the application of adaptive time-
frequency approximations to nonoscillatory structures such
as the epileptic EEG spikes.

II. METHODS

Adaptive approximations parametrize the signal in terms
of well-defined functionsgg, chosen from a large and redun-
dant dictionary of wave formsD to optimally match the sig-
nal’s structures. GivenD=hg1,g2, . . . ,gnj such thatigi i =1,
we can define an optimalM approximation of signalfstd in
D as an expansion, minimizing the following errore:

e = I fstd − o
i=1

M

wiggi
stdI , s1d

wherehgiji=1,. . .,M represents the indices of the chosen func-
tionsggi

. Finding such an optimal approximation is an intrac-
table problem—to find the minimum in Eq.(1) we have to
check all the M subsets of dictionary’s functions, which

leads to a combinatorical explosion. A suboptimal expansion
can be found by means of an iterative procedure such as the
matching pursuit(MP, Ref. [5]) described in the following
section. However, even this suboptimal solution is computer
intensive, and its practical implementation was not possible
before the last decade.

A. Matching pursuit parametrization

In the first step of MP, the wave formgg0
which best

matches the signalfstd is chosen from the dictionaryD. In
each of the consecutive steps, the wave formggn

is matched
to the signalRnf, which is the residual left after subtracting
results of previous iterations:

R0f = f ,

Rnf = kRnf,ggn
lggn

+ Rn+1f ,

ggn
= arg maxggi

PDukRnf,ggi
lu, s2d

where k· , ·l denotes the scalar product. Orthogonality of
Rn+1f andggn

in each step implies energy conservation,

ifi2 = o
n=0

m−1

ukRnf,ggn
lu2 + iRmfi2. s3d

For a complete dictionary the procedure converges tof,

f = o
n=0

`

kRnf,ggn
lggn

. s4d

From this equation we can derive a time-frequency distribu-
tion of the signal’s energy, by summing the Wigner distribu-
tions

Wgst,vd =E gSt +
t

2
DgSt −

t

2
De−ivtdt

of selected functions,*Electronic address: durka@fuw.edu.pl; URL: http://durka.info

PHYSICAL REVIEW E 69, 051914(2004)

1539-3755/2004/69(5)/051914(5)/$22.50 ©2004 The American Physical Society69 051914-1



Efst,vd = o
n=0

M

ukRnf,ggn
lu2 Wggn

st,vd. s5d

B. Time-frequency dictionary of Gabor functions

Gabor functions provide optimal joint time-frequency lo-
calization. Real valued Gabor function can be expressed as

ggstd = Ksgde−pfst − ud/sg2cosS2p
v

N
st − ud + fD , s6d

whereN is the size of the signal for which the dictionary is
constructed,Ksgd is such thatiggi=1. DictionaryD used in
decomposition(2) is constructed from such functions with
different g=hu,v ,s,fj, plus complete sets of the Dirac’sd
functions and cosines. Issues related to the construction of
the dictionary and implementations of bias-free MP decom-
positions, used in this study, are discussed in Ref.[4].

C. Nonoscillating structures

In the EEG studies published so far, matching pursuit was
used for the parametrization of oscillatory structures, such as

the one presented in the bottom right plot of Fig. 1. When
exploring the parametric description, the amplitude of a
structure fitted by MP procedure was calculated as
2kRnf ,ggn

lKsgnd, following Eqs. (6) and (2) (factor 2 ac-
counts for the peak-to-peak amplitude). Similarly, parameter
s from Eq. (6) was taken as representative of the structure’s
time width.

However, in the case of nonoscillating structures such as
the one constructed in the left column of Fig. 1, a special
care must be taken: we observe a significant discrepancy
between the(doubled) amplitude of the Gaussian from the
upper plot and the amplitude of Gabor resulting from its
multiplication by the low-frequency cosine. Also, the effec-
tive half-width of the negative peak is smaller than those of
the Gaussian.

We observe such effects when the periodsT=2p /vd of
modulating oscillations is similar to the width of the modu-
lated GaussiansT<sd, that is,

vs< 2p. s7d

At this point we should quote the uncertainty principle in
signal analysis, which gives a lower bound for the product of
the time and frequency widths of a signal/structure, mea-
sured in terms of standard deviations of the corresponding
variables(Appendix):

FIG. 1. Two Gabor functions created from the same Gaussian
envelope and different frequencies of modulating cosines. Top,
Gaussian envelopes; middle, modulating cosines; bottom row, Ga-
bor functions(product of the above). For the structures constructed
in the left column,vs<2p. Time and amplitude are in arbitrary
units.

FIG. 2. Time-frequency density of energy(Eq. (5)) of the simu-
lated signal, composed from the structures shown in Fig. 1, esti-
mated by the MP algorithm. Time and frequency are in arbitrary
units.

FIG. 3. Time-frequency representation of energy density[Eq.
(5), upper plot] of a signal(lower plot) containing four epileptic
EEG spikes. Horizontal scale in seconds and vertical(upper plot) in
Hz. Parameters of structures classified as spikes, calculated from
the MP decomposition, are given in Table I. Time series presented
in Figs. 3–6, similarly to all the EEG data used in this study, are
obtained from Ref.[9], courtesy of authors of Ref.[8].

FIG. 4. Time-frequency representation of energy density of a
spike-wave complex occurring around 1st second.
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stsv ù
1
2 s8d

For real-valued signals, this product is usually significantly
higher than the minimum. Confronting Eqs.(7) and (8) we
realize that nonoscillatory structures from the Gabor dictio-
nary fall within the region of parameters, where their product
is of a similar order of magnitude as the product of their
standard deviations.

On the other hand, MP can be also viewed as an optimi-
zation procedure, and the chosen functions must fit the
signal—in the sense of the product from Eq.(2)—irrelevant
of the time-frequency region in which their parameters fall.

So, in this special casesvs<2pd, the set of parametersg
of function gg [Eq. (6)], fitted to the signal by MP, may not
provide the optimal description of the physical features of
given structure(amplitude, half-width), but the functiongg

still has the time course(shape) well fitting the structure(if
the structure is coherent with the applied dictionary). In such
case we can retrieve the actual(effective) half-widthWeff and
amplitudeAeff of the described structure as the half-width of
the extremum ofgg and maxsggd−minsggd, respectively.

Thosegg, for which less than 1.5 periods of the cosine
modulation fall within the half-width of the Gabor envelope,
in this study, were treated as nonoscillating. For these struc-
turesWeff andAeff were calculated numerically. Table I pre-
sents examples of discrepancies between the mathematical
parameters of the functiongg [Eq. (6)] and effective param-
eters of the fitted structuresWeff,Aeff. They are caused by the
construction of the time-frequency dictionaries by uniform
sampling of the space of parameters of mathematical func-
tions [Eq. (6)], without taking into account physical(effec-
tive) properties of resulting wave forms. This observation
triggered research on the reduction of dictionaries size,
which may help in optimization of the MP algorithm(its
discussion lies beyond the scope of this study).

D. Experimental data

Example data sets containing epileptic EEG spikes and
artifacts were downloaded from http://republika.pl/eegspike,
a site created by the authors of Ref.[8], where data were
divided into four groups:(1) traces with large, single spikes
or sharp waves which are not accompanied by the prominent
slow wave—30 epochs,(2) test signals with spikes or sharp
waves followed by slow waves with comparable
amplitudes—14 epochs,(3) “a sequence of spikes(spikes

localized close to each other)”—7 epochs,(4) artifacts and
portions of EEG traces with no spikes or sharp waves—40
epochs.

III. RESULTS

A. Detection of epileptic EEG spikes

A simple detector of epileptic spikes was constructed as a
filter operating in the space of parameters of structures fitted
to the EEG by MP. These parameters were calculated taking
into account results from Sec. II C.

Detection was performed by choosing from the structures
fitted to the signal those conforming toa priori chosen pa-
rameters: half-width of the structure from 3 to 6 ms and am-
plitude above 300 a.u. Amplitude was processed in arbitrary
units, since the conversion ratiospoints/mVd was not given
in Ref. [9]. If this multiplicative constant is known, which is
the case in all clinical analyses, we are dealing with ampli-
tude expressed inmV.

The above ranges of parameters were chosen arbitrarily,
based upon the observed characteristics of structures indi-
cated in Ref.[9] as epileptic spikes. Apart of this, a simple
test was added to check whether the wave form was fitted to
an edge of signal’s step rather than a separate structure(i.e.,
local maximum), which was the case for some of the artifacts
present in the example data set[9].

This approach yielded sensitivity 0.92 and selectivity
0.84, Ref.[18], for the signals from groups 1, 2, and 4(as
described in Sec. II D 44 epochs with 73 events marked as
spikes and 40 artifact epochs).

Spike-wave complexes from the series appearing in data
epochs from group 3(as enumerated in Sec. II D, cf. Figs. 5
and 6) were not parametrized as separate structures; instead,
each series was identified by a prominent oscillatory struc-
ture of frequency between 2.8 and 3 Hz and several harmon-
ics. This effect will be discussed in the following section.

B. Time synchronization and properties
of iterative solutions

Unlike the other spikes and spike-wave complexes,series
of spike-wave complexes from group 3(Sec. II D) are usu-

TABLE I. Parameters of the structures from Fig. 3, classified as
epileptic spikes.A, W, f, t0—parameters of functions fitted by the
MP procedure; from Eq.(6): A=2kRnf ,ggn

lKsgnd, W=s, f =v /2p,
t0=u. Effective amplitudeAeff=maxsggd−minsggd, Weff is the half-
width of the extremum.

A Aeff Wssd Weffssd fsHzd t0ssd

10417 1104 0.067 0.054 1.3 2.9

2035 975 0.100 0.054 6.3 3.8

13205 963 0.062 0.050 1.0 0.7

2276 795 0.079 0.058 3.6 1.7 FIG. 5. Series of spike-wave complexes from group 3(Sec.
II D ). Unlike in Fig. 4, structures(except for the first two) are
explained in terms of the rhythmic activity with base frequency
2.93 Hz (horizontal structure visible between 1.5 and 5 sec). Har-
monics change frequencies before the 3rd second.
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ally represented together in terms of the harmonic series of
Gabor functions(Figs. 5 and 6. It is a side effect of the
greedy short-sighted strategy, applied by the MP algorithm to
find a suboptimal solution for the generally intractable prob-
lem of an adaptive approximation in a redundant dictionary.
It explains the largest possible amount of energy in each
single iteration, without taking into account the next step(s)
[Eq. (2)].

In some cases, the target residual error from Eq.(1) might
have been lower if the spikes(and maybe also slow waves)
belonging to the series were parametrized separately. How-
ever, in a single step, for a series of periodic structures, wide
Gabor function may give larger value of the product
kRnf ,ggn

l from Eq. (2) than a narrow wave form fitting per-
fectly a single spike or slow wave—even if the residuum
leaves a lot of harmonics to explain in the following itera-
tions. This tradeoff works in favor of the harmonic expansion
only above a certain threshold of periodicity, since the algo-
rithm is very sensitive to phase.

This threshold defines a binary measure of synchroniza-
tion of series of spike-wave complexes, or any other repeti-
tive structures. The notion of synchronization is usually re-
ferred to at least two simultaneously measured univariate
time series[10]. In this study we refer to the synchronization
of repetitive structures into a periodic signal, which can be
also viewed as a synchronization to an external, perfectly
periodic pacemaker. Transition occurs, when these structures
synchronize enough to be efficiently represented in terms of
Fourier series. However, exact properties of this measure
(threshold/transition) are hard to quantify in general case,
since the matching pursuit is a highly nonlinear and signal-
dependent algorithm.

Theoretical examples of this kind of “failures” are given,
e.g., in Refs.[2,11,12]. Some of these cases can be properly
solved by the orthogonalized matching pursuit[13], at a cost
of increased computational requirements and a possibility of
introducing numerical instabilities[14]. We may also modify
the similarity function used in each step to choose the “best
fit” [15]. Other works(e.g., Ref.[16]) indicate that global
optimization of thel1 norm of expansion’s coefficients—
rather than thel2 norm as in Eq.(1)—might be a better
choice[12], but, in spite of the advances in linear program-
ming, computational complexity of this solution is still very
high.

Nevertheless, in the analysis of epileptic EEG spikes this
effect is definitely more of an advantage than failure, since it
offers a clear distinction between a series of independent or
loosely related events and rhythmic discharges. In the latter
case we may hypothesize on their common source and clini-
cal aspects of such activity. In the context of the detection
algorithm, this feature provides a direct differentiation be-
tween separate spikes and rhythmic discharges, which are
usually related to absence seizures.

In Fig. 5, we observe harmonic representation of most of
the spikes; separate representation of the first two indicates
that they are not quite synchronized with the rest, which is
natural at the onset of synchronization. The first two spikes
are distant enough from the edge of the decomposed epoch,
therefore we can interpret their separate representation as a
lack of synchronization. Separate representation of the last
spike, located just before the end of the analyzed epoch, is a
border effect—artifact of the method, related to the dictio-
nary limited to Gabor functions. Slow waves after 1.5 sec are
represented by a common base frequency 2.93 Hz, but the
harmonics change before 3rd second.

Figure 6 presents an epoch representing spiking activity at
the onset of synchronization. Although all the spikes seem to
come from a uniform series, the time-frequency plot ob-
tained from the MP decomposition indicates that the strict
synchronization begins in the 3rd second, which may be the
indicator of the actual onset of electrographic seizure.

IV. DISCUSSION

In spite of the tremendous progress in signal processing
and common digital storage of EEG, visual investigation of
the raw electrographic time series is still the major clinical
tool of EEG analysis. It is basically the only reference for
newly proposed signal processing techniques: also in this
study, visually detected spikes werea priori treated as “true
positives.”

In this light we perceive one more fundamental advantage
of the proposed paradigm: as pointed out in Ref.[1], time-
frequency parameters of signal’s structures are directly trans-
latable to the terms used for the standardization of visual
EEG analysis(cf. Ref. [17]). This feature gives an almost
direct access to the knowledge base formed over 70 years of
clinical applications of EEG. This possibility, mostly absent
for other signal processing techniques proposed in this field,
is extremely valuable in brain research, where the huge in-
tersubject variability makes a reasonable verification of a
new method very difficult. This study extends this correspon-
dence to nonoscillating structures, including also, e.g.,K
complexes and sharp vertex waves present in sleep EEG. For
the presented detection of epileptic spikes, it allows to adapt
the detection parameters, chosena priori in Sec. III A, to the
standards developed for visual detection, e.g., in given clinic.
These parameters can be easily discussed with—or adjusted
by—clinicians.

Based upona priori chosen parameters, detection of epi-
leptic spikes yielded very promising results in terms of
sensitivity/selectivity(0.92/0.84). However, when comparing
these results to other detectors quoted in Ref.[8] (0.70/0.67,

FIG. 6. Another series of spike-wave complexes, where spikes
before the 3rd second are represented as separate structures, and
after as rhythmic activity. Like in Fig. 5, first harmonic of the slow
wavess2.9 Hzd is less sensitive to the synchronization.
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0.79/0.41), we must remember that the performance pre-
sented in this study was evaluated on a limited example
dataset[9]. It contained 44 epochs with 73 events marked as
spikes and 40 artifact epochs. As one of the authors of Ref.
[8] (Mirosław Latka) pointed out in an email communica-
tion, these examples were selected as “didactical” ones, and
selectivity evaluated on these epochs is higher than the av-
erage. Data set used in Ref.[8] contained 340 epileptic
events.

Cases, in which detection of separate spikes “failed” in
favor of a harmonic parametrization of their series, represent
a very sensitive detector of rhythmic discharges, as opposed
to separate structures(both these types are detectable within
the presented framework). Since rhythmic discharges are
usually accompanying absence seizures, this feature may be
very valuable in clinical applications. Finally, it is natural to
relate the picture of synchronization presented in Fig. 6 to
hypotheses and models describing the evolution of epileptic
seizures, where the seizure starts when certain threshold of
synchronization of cortical generators is reached.

V. REPRODUCIBLE RESEARCH

A complete software for calculating MP decomposition of
signals and graphical display of resulting time-frequency
plots of energy density is available at http://brain.fuw.edu.pl/
˜durka/software/mpMatlab scripts for performing the detec-
tion described inthis paper, as well as reproducing the fig-
ures, are available at http://brain.fuw.edu.pl/˜durka/spikes
These files will be soon moved to a new portal http://eeg.pl
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APPENDIX. UNCERTAINTY PRINCIPLE
IN SIGNAL ANALYSIS

st
2sv

2 ù
1
4 or stsv ù

1
2 sA1d

where, denoting the Fourier transform ofsstd as ŝsvd,

st
2 =

1

isstdi2E
−`

`

st − ud2usstdu2dt,

sv
2 =

1

2piŝsvdi2E
−`

`

sv − jd2uŝsvdu2dv,

u =
1

isstdi2E
−`

`

tusstdu2dt,

j =
1

2piŝsvdi2E
−`

`

vuŝsvdu2dv.
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